Computer System

Step4. CA0702:Cache memory and
execution speed of programs

http://arch.naist.|p/Lectures/ARCH/ca0702/ca07/02e.pdf

Copyright © 2021 NAIST Y.Nakashima

http://arch.naist.jp/Lectures/ARCH/ca0702/ca0702e.pdf

Memory Hierarchy

Too slow without cache memory

Highest frequency

Registers in CPU
(64bit x 64)

1

—
g

Real path used by OS (operating system)

PR

Level-1 cache in CPU

(32KB)

Id/st insn.

Level-2 cache in CPU (512KB)
Level-3 cache in CPU (30MB)

Direct access with

ey

Main memory
(8GB-1TB)

I/O control
registers

virtual access with OS support

Virtual memory space in external storage

(paging device)

File system in external storage

@WyNAIST.

Cache is not almighty

Spatial locality:
Memory location near past accessed tend to be
accessed again.

Temporal locality:
Memory location near recently accessed tend to be
accessed for a while.

That means following programs run very slow speed
» Working set > capacity of cache
» Sequential access with no-reuse

Which cache can execute your program in fastest speed?
» Large but slow cache
» Small but fast cache
» Combination of multi-level cache
Ans. No one can recommend.
It depends on the skill of the programmer.
wW3NAIST.

CPU

CPU

Registers,ALU

4bytes/cycle

4bytes/10cycle

CPU,

Registers,ALU

4bytes/cycle

Reuse+

prefetch

4bytes/20cycle

Evolution of cache to cover slow memory

Registers,ALU -

Reuse+
multi-prefetch

4bytes/cycle

4bytes/80cycle*4sets

Memory
delay=10cycle

(a) Simple structure

Memory
delay=20cycle

(b) Reuse+prefetch

Bank1
Bank2
bank3 s
Bank4

Memory
delay=80cycle

(c) Reuse+multiple-prefetch

wyNAIST

Address

| o | o

18bit

iI

Inside of cache

Memory address has three fields
» High-bits for tag
» Mid-bits for l[ine-number
» Low-bits for offset in each line

Length
— 3bit

Gdbyte

A

==

= 64lines

Direct map II

=
o

OK

F

o | o

Address

Wo20bit WV 20bit WV 20kit W 20hkit

Length

3hit

Hdbyie Habyte tdbyte Hdbyte

14

4way set asso

I B

OK

ciative

=]
L)

WyNAIST.

Type of cache (write-through)

Write-through cache:
Store data to both of cache and memory simultaneously
X Store-buffer is required
O Replacement is simple

Continuous store gives heavy pressure to store buffer.
» If throughput from store buffer to memory is poor, the
performance is significantly degraded.

Cache-miss is

observed only
Load for load
Loagé?ttore s Cache "
B -~ ain
Store Fast Slow memory

Store buffer is required for absorbing
different bus speed

@WyNAIST.

Type of cache (write-back)

Write-back cache:
Store data only to cache, written back to memory later
O high-speed for multiprocessor system
X Replacement is complicated

Can save power consumption of memory bus.
Can save traffic of memory bus.

Cache-miss is
observed for

Load load & store
— -
LO&SI{]SHFOFG —M Cache - |
Store Write-back of Main
dirty-line memory
Fast Slow

7 WyNAIST.

Formative assessment

@®Describe the procedure when store misses cache.
(consider both of the case M=0 and M=1)

Cache-miss is
observed for

Load load & store
— - i
Loagrllsi’é[ore —M Cache . .
Store Write-back of Main
dirty-line memaory

Fast Slow

Formative assessment

@®Describe the procedure when store misses cache.
(consider both of the case M=0 and M=1)

Cache-miss is

| oad observed for
0a load & store
-— -
Loal(j]r/]si;ttore —-M Cache - |
Store Write-back of Main
dirty-line memory
Fast Slow

Let’'s assume “store addr-A” misses cache, and corresponding cache-
line has valid data of addr-B.
» If M=0, the cache-line has the same value as in addr-B.
1. The line can be discarded immediately.
2. Send read-request for addr-A to memory.
3. Arrived data is stored in the line.
> If M=1, the cache-line has new value and memory has old value.
1. Send write-request for addr-B to memory.
2. Send read-request for addr-A to memory.
3. Arrived data is stored in the line.
M is changed to 1.

Programming language and data cache

10

Alignment of data-structure and cache-structure (1D-array)

» Architectural important issue is layout of data-structure.

Top of array
J

| Loc of A[j] is “A[0] + elem_size *}”
A[0] | A[L] A[j] A[T]
In case of C:
int i;
int A[1000]; /* 0..999
for (i=0; i<1000; i++) { /* 0..999
A[i] = xxxx;

}

In case of FORTRAN:

INTEGER I
INTEGER A(1000)
DO 10 I=1,1000 -+ 1..1000
A(I) = xxxx - loc of A[l] is “A[1] + elem_size * (I-1)”
10 CONTINUE

@WyNAIST.

Alignment of data-structure and cache-structure (2D-array)

» Location of data depends on programming language.
Top of array

EJ 4

A[0,0] | A[0,1] A[0,7] A[0,7] Loc of A[k,]] is “A[0,0] + 6|em_S_ize * (num_j * k + j)n

A[1,0] | A[L1] AlL 3] A[L,7] or “A[0,0] + elem_size * (num_k * J + k)"
|

Alk,0] | Afk,1] Alk, il | Alk,7]
Lo

A[5,0] | A[5,1] Al5,i] A[5,7]

In case of C:

for (i=0; i<1000; i++) /* A[O[O] ... A[999][999]
for (j=0; j<1000; j++)/* Inner-most loop should right-side index
A[i][j] = xxxx; /* A[0][0] A[O][1] ... A[999][998] A[999][999]

In case of FORTRAN:

DO 10 I=1,1000

DO 10 J=1,1000 --- Inner-most loop should left-side index
A(J,I) = xxxx - A[1][1] A[2][1] ... A[999][1000] A[1000][1000]
10 CONTINUE

12 @NAIST.

13

Estimation of cache capacity

double dO[512][1024/8]; /* 0.5MB */
double d1[1024][1024/8]; /* 1.0MB */
double d2[2048][1024/8]; /* 2.0MB */
double d3[4096][1024/8]; /* 4.0MB */
main() { int i, j;
restme () ;
for (i=0; i<4096*N; i++)
for (3=0; 3<512; j++) dO[j][0] += 1.0;
printf (" .5M:%d", gettme());

restme() ;
for (i=0; i<2048*N; i++)

for (j=0; j<1024; j++) di[j]1[0] += 1.0;
printf (" 1M:%d", gettme());

restme () ;

for (i=0; i<1024*N; i++)

for (j=0; j<2048; j++) d2[j][0] += 1.0;
printf (" 2M:%d", gettme());

restme () ;

for (i=0; i<512*N; i++)

for (j=0; j<4096; j++) d3[3][0] += 1.0;
printf (" 4M:%d\n", gettme());

w3NAIST.

Performance degradation by cache-miss

» CPU frequency-L2capacity execution time (seconds
» SPARC 650M-0.5M 5M:67IM:616 2M:733 4M:74
» Pentum-M 1.5G-1.0M 5M:29 1M:34C2M:265 4M:30
» XEON 2.8G-0.5M 5M:25AM:312 2M:305 4M:31D>
real app. (cache-hit-ratio=high) : 26sec
real app. (cache-hit-ratio=low) : 70sec
» Pentum<4 3.2G-2.0M 5M:22 1M:23 2M:25(4M:233)
real app. (high): 25sec
real app. (low) : 51sec
» Pentium-4 3.4G-1.0M 5M:18 1M:22C2M:122 4M: 121>
real app. (high): 24sec
real app. (low) : 48sec
» XEON 3.6G-1.0M 5M:19 1M:192M:207 4M:205>
real app. (high): 22sec
real app. (low) : 45sec
14 WINAIST.

That’s all for today

15

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15

