
Computer System

Step4. CA0702:Cache memory and
execution speed of programs

http://arch.naist.jp/Lectures/ARCH/ca0702/ca0702e.pdf

Copyright © 2021 NAIST Y.Nakashima

1

http://arch.naist.jp/Lectures/ARCH/ca0702/ca0702e.pdf


2

Too slow without cache memory
Memory Hierarchy

Registers in CPU
(64bit x 64)

H
ig

he
st

 fr
eq

ue
nc

y

D
ire

ct
 a

cc
es

s 
w

ith
 

ld
/s

t i
ns

n.

vi
rt

ua
l a

cc
es

s 
w

ith
 O

S 
su

pp
or

t
Real path used by OS (operating system)

Level-1 cache in CPU
(32KB)

Level-2 cache in CPU (512KB)
Level-3 cache in CPU (30MB)

Main memory
(8GB-1TB)

I/O control 
registers

Virtual memory space in external storage
(paging device)

File system in external storage



Cache is not almighty

3

The benefit of cache system relies on locality in programsSpatial locality:
Memory location near past accessed tend to be 
accessed again.

Temporal locality:
Memory location near recently accessed tend to be 
accessed for a while.

That means following programs run very slow speed
 Working set > capacity of cache
 Sequential access with no-reuse

Which cache can execute your program in fastest speed?
 Large but slow cache
 Small but fast cache
 Combination of multi-level cache

Ans. No one can recommend.
It depends on the skill of the programmer. 



Evolution of cache to cover slow memory

4

Registers,ALU Registers,ALU Registers,ALU

4bytes/cycle 4bytes/cycle 4bytes/cycle

Reuse
Reuse+
prefetch

Reuse+
multi-prefetch

4bytes/10cycle 4bytes/20cycle 4bytes/80cycle*4sets

Memory
delay=10cycle Memory

delay=20cycle
Memory
delay=80cycleB

an
k1

B
an

k2
ba

nk
3

B
an

k4

(a) Simple structure (b) Reuse+prefetch (c) Reuse+multiple-prefetch



5

Direct map

64lines

4way set associative

Memory address has three fields
 High-bits for tag
 Mid-bits for line-number
 Low-bits for offset in each line

Inside of cache

Address                 Length Address                 Length



Type of cache (write-through)

6

Write-through cache:
Store data to both of cache and memory simultaneously
× Store-buffer is required
○ Replacement is simple

Continuous store gives heavy pressure to store buffer.
 If throughput from store buffer to memory is poor, the 

performance is significantly degraded.

Load

Store

Load/store 
unit Cache

Main 
memoryFast Slow

Store buffer is required for absorbing 
different bus speed

Cache-miss is 
observed only 

for load 



Type of cache (write-back)

7

M

Write-back cache:
Store data only to cache, written back to memory later
○ high-speed for multiprocessor system
× Replacement is complicated

Can save power consumption of memory bus.
Can save traffic of memory bus.

Load

Store
Cache

Main 
memory

Fast Slow

Load/store 
unit

Cache-miss is 
observed for 
load & store 

Write-back of 
dirty-line



Formative assessment

●Describe the procedure when store misses cache.
(consider both of the case M=0 and M=1)

8

MM

Load

Store
Cache

Main 
memory

Fast Slow

Load/store 
unit

Cache-miss is 
observed for 
load & store 

Write-back of 
dirty-line



M

Formative assessment
●Describe the procedure when store misses cache.

(consider both of the case M=0 and M=1)

Let’s assume “store addr-A” misses cache, and corresponding cache-
line has valid data of addr-B.
 If M=0, the cache-line has the same value as in addr-B.

1. The line can be discarded immediately.
2. Send read-request for addr-A to memory.
3. Arrived data is stored in the line.

 If M=1, the cache-line has new value and memory has old value.
1. Send write-request for addr-B to memory.
2. Send read-request for addr-A to memory.
3. Arrived data is stored in the line.

4. M is changed to 1.

M

Load

Store
Cache

Main 
memory

Fast Slow

Load/store 
unit

Cache-miss is 
observed for 
load & store 

Write-back of 
dirty-line

9



Programming language and data cache

10



11

 Architectural important issue is layout of data-structure.
Alignment of data-structure and cache-structure (1D-array)

Top of array
Loc of A[j] is “A[0] + elem_size * j”

In case of C:

In case of FORTRAN:

0 .. 999
0 .. 999

1 .. 1000
loc of A[I] is “A[1] + elem_size * (I-1)”



Alignment of data-structure and cache-structure (2D-array)

12

 Location of data depends on programming language.
Top of array

Loc of A[k,j] is “A[0,0] + elem_size * (num_j * k + j)”
or “A[0,0] + elem_size * (num_k * j + k)”

In case of C:

In case of FORTRAN:

A[0[0] ... A[999][999]
Inner-most loop should right-side index

A[0][0] A[0][1] … A[999][998] A[999][999]

A[1][1] A[2][1] … A[999][1000] A[1000][1000]
Inner-most loop should left-side index



Estimation of cache capacity

13



14

frequency-L2capacity    execution time (seconds)
Performance degradation by cache-miss

real app. (cache-hit-ratio=high) : 26sec
real app. (cache-hit-ratio=low) : 70sec

real app. (high): 25sec
real app. (low) : 51sec

real app. (high): 24sec
real app. (low) : 48sec

real app. (high): 22sec
real app. (low) : 45sec



15

That’s all for today


	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15

